On the Sum-Capacity of Degraded Gaussian Multiaccess Relay Channels
نویسندگان
چکیده
The sum-capacity is studied for a K-user degraded Gaussian multiaccess relay channel (MARC) where the multiaccess signal received at the destination from the K sources and relay is a degraded version of the signal received at the relay from all sources, given the transmit signal at the relay. An outer bound on the capacity region is developed using cutset bounds. An achievable rate region is obtained for the decode-and-forward (DF) strategy. It is shown that for every choice of input distribution, the rate regions for the inner (DF) and outer bounds are given by the intersection of two K-dimensional polymatroids, one resulting from the multiaccess link at the relay and the other from that at the destination. Although the inner and outer bound rate regions are not identical in general, for both cases, a classical result on the intersection of two polymatroids is used to show that the intersection belongs to either the set of active cases or inactive cases, where the two bounds on the K-user sumrate are active or inactive, respectively. It is shown that DF achieves the capacity region for a class of degraded Gaussian MARCs in which the relay has a high SNR link to the destination relative to the multiaccess link from the sources to the relay. Otherwise, DF is shown to achieve the sum-capacity for an active class of degraded Gaussian MARCs for which the DF sum-rate is maximized by a polymatroid intersection belonging to the set of active cases. This class is shown to include the class of symmetric Gaussian MARCs where all users transmit at the same power. The work of L. Sankar and N. B. Mandayam was supported in part by the National Science Foundation under Grant No. ITR0205362. The work of H. V. Poor was supported by the National Science Foundation under Grants ANI-03-38807 and CNS06-25632. The material in this paper was presented in part at the Information Theory and Applications Workshop, San Diego, CA, January 2006. L. Sankar and H. V. Poor are with Princeton University. N. B. Mandayam is with the WINLAB, Rutgers University. 2 Index Terms Multiple-access relay channel (MARC), outer bounds, achievable strategies, Gaussian and degraded Gaussian MARC.
منابع مشابه
On the Achievable Rate-Regions for the Gaussian Two-way Diamond Channels
In this channel,we study rate region of a Gaussian two-way diamond channel which operates in half-duplex mode. In this channel, two transceiver (TR) nodes exchange their messages with the help of two relay nodes. We consider a special case of the Gaussian two-way diamond channels which is called Compute-and-Forward Multiple Access Channel (CF-MAC). In the CF-MAC, the TR nodes transmit their mes...
متن کاملTotal Capacity of Multiaccess Vector Channels
The well known waterrlling power allocation policy maximizes the sum capacity of parallel Gaussian channels. We consider multiaccess vector channels with additive colored Gaussian noise and asymmetric user power constraints and completely characterize the sum capacity of this channel. We show that the sum capacity of the multiaccess vector channel is upper bounded by that of corresponding paral...
متن کاملSubmitted to the IEEE Transactions on Information Theory , July 2005 Cooperative Relay Broadcast Channels
The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into standard two-user broadcast channels to support user cooperation. In the first channel, the Partially Cooperative Relay Broadcast Channel, only one user in the system can act as a relay and transmit to the other user through a relay link. An achievable rate region is derived ba...
متن کاملExtension of the Coverage Region of Multiple Access Channels by Using a Relay
From practical and theoretical viewpoints, performance analysis of communication systems by using information-theoretic results is important. In this paper, based on our previous work on Multiple Access Channel (MAC) and Multiple Access Relay Channel (MARC), we analyze the impact of a relay on the fundamental wireless communications concept, i.e., coverage region of MARC, as a basic model for u...
متن کاملSum-Rate Maximization Based on Power Constraints for Cooperative AF Relay Networks
In this paper, our objective is maximizing total sum-rate subject to power constraints on total relay transmit power or individual relay powers, for amplify-and-forward single-antenna relay-based wireless communication networks. We derive a closed-form solution for the total power constraint optimization problem and show that the individual relay power constraints optimization problem is a quad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008